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Limiting of Signals in Random Noise 
PRAVIN  C.  JAIN,  MEMBER,  IEEE 

Abstract—The effect of ideal bandpass limiting on a signal lying in 
narrowband Gaussian noise is analyzed. General analytic expressions for 
the limiter output components are derived using an integral representation 
for the limiter characteristic. This method allows retention of the phases 
of all the signals and the intermodulation products at the limiter output, 
which are destroyed in the characteristic-function method generally used 
in limiter studies. Expressions for the desired signals and intermodulation 
product amplitudes are obtained for the case when the limiter input 
consists of three angle-modulated sinusoids and noise. The analysis is 
extended to n modulated sinusoids plus noise, and approximate expressions 
for the signal, intermodulation product, and noise terms are derived. 
Numerical results are presented for the signal suppression and the 
limiter output signal amplitudes for the case of three input signals, two 
of equal amplitude. 

INTRODUCTION 

THE calculation of the output of a limiting device when 
its input consists of a sum of several signals has been 

the subject of a great deal of theoretical analysis and has 
resulted in a number of widely quoted publications. Essen- 
tially, two methods of approach have been used to analyze 
the problem. The first approach, commonly known as 
the characteristic-function method of Rice, involves com- 
puting the autocorrelation function of the limiter output 
and then taking the Fourier transform to obtain the power- 
density spectrum. Although a general expression for the 
limiter output autocorrelation function can be derived, its 
computation becomes extremely involved when modulation 
of the input signals is considered. The difficulty lies in 
determining the characteristic function of the signals with 
arbitrary modulation. However, if the signals are statisti- 
cally independent angle-modulated sinusoids, and only the 
average power or the magnitude of the signal and cross- 
product terms at the limiter output is of interest, the 
modulation of the input signals can be ignored, which 
considerably simplifies the analysis. Davenport [1] was 
first to use this approach to investigate the effect of hard 
limiting a single sinusoidal signal and narrowband Gaussian 
noise. Jones [2] used the same method to analyze the case 
of two sinusoids plus noise. More recently. Shaft [3] and 
Gyi [4] independently extended the analyses to include n 
sinusoids. The magnitude of any signal or cross product 
is given by an untabulated infinite integral that has been 
numerically evaluated for a number of cases of interest. 

In many practical applications, the phases of the signal 
and cross-product terms are also of interest. For example, 
in an FM or PM system, the spreading of the power 
spectral density of the signal and cross-product terms will 
be a function of their phase modulation, even though the 
average power in any one output component is indepen- 
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dent of its phase. Thus, modulation of the input signals 
must be considered in the analysis, in order to retain the 
phase of the signal and cross-product terms at the output 
of the limiter. 

The second method, which can be referred to as the 
Fourier-expansion approach, is carried out entirely in the 
time domain, in contrast to the autocorrelation approach, 
which treats the problem in the frequency domain. Analysis 
in the time domain does not lose the phase of the signal 
and cross-product terms. It also allows removal of the 
assumption of statistical independence between the input 
signals. This approach was used by Granlund [5] and later 
by Baghdady [6] to investigate the noiseless case of two 
sinusoids passed through an ideal bandpass limiter. More 
recently, Sollfrey [7] used the same approach to analyze 
the effect of hard limiting on a sum of three or four sinus- 
oidal signals without noise. Closed-form analytic expressions 
for the amplitude of the desired signal terms were obtained 
for three input signals, two of equal amplitude, and for 
four signals, having two pairs of equal ampHtude. The 
Fourier expansion method, however, has the drawback 
that it is difficult to consider the effect of noise present 
at the input to the limiter. The above references, therefore, 
do not consider noise and are directed primarily to the 
calculation of signal amplitude at the output of the limiter. 

The purpose of this paper is to extend the Fourier- 
expansion method to include random noise in the analysis, 
and to derive a general analytical expression for the output 
of a limiting device. The approach is similar to that used 
by Reed [9] for calculating the amplitudes of two signals 
in noise. Closed-form expressions for the desired signal 
and cross-product amplitudes are presented for the case 
of three modulated sinusoids and noise. The analysis is then 
extended to n modulated sinusoids plus noise, and approx- 
imate expressions for the signal, cross-product, and noise 
terms are derived. 

CALCULATION OF THE LIMITER OUTPUT 

The specific model for the bandpass limiter to be con- 
sidered is shown in Fig. 1. The input to the limiter 

x{t) = s{t) + n{t) (1) 

consists of the signal s{t) and a band of zero-mean stationary 
Gaussian noise n{t). It is assumed that the bandpass filter 
preceding the limiter is wide enough to pass the signal with 
negligible distortion and limits the input noise to a narrow 
bandwidth that is small compared to the center frequency 
of the filter. The limiter is followed by another bandpass 
filter that confines the output spectrum essentially only 
to the fundamental band of the signal. 

It is assumed that the limiter has a hard-limiting character- 
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as follows: 

z(0 = Eiyit)-] = - J" sin [vsity] ■ E[Jo{vr)-] ~ .    (7) 

Fig. 1.    Model for investigation of ideal symmetric limiting. 

istic that limits its output to either ±1. Thus, if the limiter 
input is x(0, the output y{t) may be expressed in analytical 
form [7] as 

y{t) = - I    sin [t)x(0] — • (2) 
n Jo V 

When the expression (1) is inserted into this integral, the 
sine of a sum may be expanded into the sum of two prod- 
ucts of sine and cosine. Thus, 

y{t) = -        sin [vsit)] cos [rn(0] — 
Tt Jo ^ 

+ - r cos [vsity] sin [vn(t)-] - .   (3) 
nJo ^ 

The narrowband Gaussian noise at the limiter input may 
be expressed as 

Since the noise envelope has a Rayleigh distribution 

,2 

p(r) = -. exp 
r 

2?. 
(8) 

where a^ is the total noise power at the limiter input, the 
expected value of J^ivr) is given by [8] 

E\Jo{vr)1 =   f" Jo{vr)p{r) dr = exp 
Jo L 

Substitution of (9) in (7) yields 

2 r°° 
z(f) = -       sin [i;s(0] • exp 

n Jo 

This is identical to the expression obtained by Reed [9] 
for calculating the amplitudes of two signals in noise. The 
above integral may also be written in terms of the error 
function [10] as 

exp - 
2 . 

t)' ■"1 
2 . 

dv 
V 

(9) 

(10) 

z(0 = erf 
n{t) = r cos {coot + 0), (4) 

(11) 

where the envelope r and the phase (j) are slowly time- 
varying random variables having Rayleigh and uniform 
distributions, respectively. 

Substituting the above expression for the noise in (3), 
and using the general relationships 

sin (z cos p) = 2  X  (-l^J^^+iCz) cos (2m + l)p 
m~0 

00 

cos (z cos p) = Jo(z) + 2  Y.  (-I)'"i2m(z) COS 2mp,    (5) 
m=l 

the following expression for the limiter output is obtained: 

dv 2 f" dv 
yit) = -        sin [t)s(r)] • Jo{vr) — 

7t Jo V 

+ -  t  (-ir rsin[t)s(0] 
7C m= 1 J 0 

•  JiJvr) — cos 2m(a)of -I- 4>) 
V 

- t (-1)" PcosKO] 
TT m = 0 Jo 

The presence of noise at the input of a hard limiter thus 
tends to make the limiting soft, due to the gradual saturation 
characteristics of the error function. It may be seen, as 
also observed by Jones [2], that had a smooth limiter 
having an error function amplitude characteristic been 
used, the only change in (10) and (11) would have been 
to replace (T^ by <T^ -i- 7^. The quantity y determines the 
slope of the limiter characteristic, i.e., how fast saturation 
is approached in the case of soft limiting. The effect of soft 
limiting on the average output is therefore mathematically 
identical to adding noise to a hard limiter, provided that 
an error-function representation can be used for the limiter 
characteristic. 

The components that collectively make up the limiter 
output noise spectrum are the second and third integrals of 
(6): 

^;(0 = -  i  (-ir rsin[i;s(0] 
7C m= 1 Jo 

+ 
+ 

dv ■  J2m+iivr) - COS (2m -f l)(coot + 0).    (6) 
V 

All the terms in the above equation are random functions 
due to the presence of the noise envelope r and phase (f>. 
However, only the first integral will yield an average output, 
while the two other integrals will not contribute since all 
the terms contain the random phase of the noise. 

The average limiter output at any arbitrary time t is 
obtained by averaging over all possible noise amplitudes, 

•^2m(i^'*) — cos 2tn(coot + 0) 

-  I (-ir f'cosKO] 
n m=0 Jo 

•   ^2n,+i(f'-)-cos(2m + 1)(C00« + <t>).  (12) 
v 

The expressions (10) and (12) are the two fundamental 
equations for the analysis of the limiter in the time domain. 
In Davenport's notation [1], (10) represents the output 
signal and intermodulation components resulting from the 
interaction of the signal with itself {s x s terms). Similarly, 
(12) represents output noise components that are due to 
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the interaction of the input noise with itself (n x n terms) 
and with the input signal (^ x « terms). A separation of the 
noise output into n x n terms and s x n terms is not 
possible, without the knowledge of the signal waveform 

If the characteristic-function method had been used to 
calculate the limiter output, the phases of all the components 
at the limiter output would have been lost, and a separation 
of the output components as in (10) and (12) would have 
been possible only in terms of the autocorrelation function 
of the individual components. 

LIMITING OF THREE SIGNALS AND NOISE 

The effect of ideal bandpass limiting upon one and two 
sinusoids lying in narrowband Gaussian noise has been 
treated by several authors. This section presents analytic 
results for the case of three angle-modulated sinusoidal 
input signals plus noise. Let the signals at the input to the 
Hmiter be 

s{t) = a cos [coi? -I- (/ii(r)] + b cos [o.^? + (/)2(?)] 

+ c cos [co3r -f- ^3(0] 

= acos r + b COS s + c cos /, (13) 

where r = coit + ^^{t), and similarly for s and t. 
When (13) is inserted into (10), the sine of a sum may be 

transformed by simple trigonometry into the sum of four 
products of sines. Thus 

where h,,^^ represents the integral 

iva)J^{vb)JXvc) 
exp t)V^ 

dv.   (16) 

The output of the limiter can be arranged in terms of 
signal and cross-product components by representing each 
of the products of the three cosines in (15) as a sum of four 
cosines using the trigonometric identity: 

cos a • cos jS ■ cos 7 = ^[cos {ai + p + y) 

+ cos (a -I- )5 - i) 

4- cos (a - ^ 4- y) 

+ cos {a - p - y)-]. (17) 

The amplitude of any desired signal or cross-product 
component may be obtained from (16). The signal and the 
strongest cross-product components are obtained by 
setting « = m = g' = Oin (15): 

z(0 « Aioo cos r + hoio cos s + hooi cos / 

- /iui[cos (r + s + t) + cos (r + s - t) 

• + cos(r - s + t) + cos(r - s - t)].      (18) 

To evaluate the coefficient A^,^, it is convenient to begin 
with the power-series expansion of the product of two Bessel 
functions [II]: 

j,(vb) ■ j,(vc) = 1 (ivbmvcy I; IziZCi^" 

z(t) 
n Jo 

exp rV^i dv 

V 

p=o p\(p + ^)! 

• [sin (va cos r) cos (vb cos s) cos (vc cos t) 

+ sin (vb cos 5) cos (vc cos t) cos (va cos r) 

-I- sin (vc cos 0 cos (va cos r) cos (vb cos s) 

- sin (va cos r) sin (vb cos s) sin (vc cos f)]-   (14) 

Using (5), the sines and cosines may be expanded as Fourier 
series in r, s, t, whose coefficients are Bessel functions. The 
output of the limiter prior to filtering may, therefore, be 
written as 

^(0 = 4 f    I:    I (-ly-mu,^. 
n=0   m=0   q=0 

■   f^2n+i.2m.2q COS (2n + l)r cos (2ms) cos (2qt) 
CO 00 00 

+ 4 11    I (-ir-^^e„-s, 
n=0   m=0   q=0 

^2q.2n+i.2m COS (2qr) COS (In + l)s cos (2mt) 
00 00 C30 

n=0   m=0   9=0 ' 

h2m.2q,2n+i COS (2wr) COS (2qs) COS (2n + l)t 
00 00 00 

- 4   y       y      y    (-lY + m + q, 

•  COS (2n + l)r cos (2m + l)s cos (2q + l)t,   (15) 

'i{-P,-p-i,ri + l,^y (19) 

where 2Fi(   ) is the Gaussian hypergeometric function. 
Substitution of the above in (16) yields 

"mti - 
n(rj\) 

fby jcy - _(-i)p 
\2/     12/    pt-o   p] (n  + 

2p 

■r •'0 

J^(va) • v' Jl + i+2p-l . exp ?] dv.   (20) 

The solution of the above integral, which is attributed to 
Weber and Sonine [8], is given in terms of confluent hyper- 
geometric function. The coefficient h^^^ may be written 
explicitly as 

'-'' = <^) (vrJ' (vb)' (vrj' 
(-1)^ 

P = 0  p\ (p +  ,^) A f^ + ri + i 

'      2a') ' 
.F,{p^^^±^,,^, 

fi + t] + ^ odd.   (21) 
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This form is useful for numerical computations because 
the Gaussian hypergeometric function terminates after the 
{p + l)th term due to the parameter -p. The series 
representation for h^^^ is convergent, unless one or more 
of the input signals rise substantially above the input noise 
level, or the noise is weak (<r^ x 0).' In this case, the con- 
vergence of (21) is dependent on the relative amplitude 
of the three signals. In the general case of three signals of 
arbitrary amplitudes in weak noise, a different representa- 
tion for the h coefficients is required. This will be treated 
later in this section. 

In the special case of two signals having equal amplitude, 
{b = c), the expressions for h^^^ may be simplified by using 

the identity 

Re (y - a - iS) > 0   (22) 

for the Gaussian hypergeometric function. If the input noise 
can be neglected, the expressions may be further simplified 
by using the asymptotic expansion for the confluent hyper- 
geometric function: 

iFi(a,^,-Z) 
np) 

UP - a)Z=' 
a(a - ^ + 1) .,. ... 

Z 

00.   (23) 

r(-s)-r(>? + I + 2S + 1) 

(!) 

Ini 

r r(-s) -Titi + i + 2s + 1)-Tls + {fi + r, + Q/l] 

' J^   r{r, + s + l)-r(c -f s + l)-r(?; + ^ + s + 1) 

If only the first term in the series expansion is taken, the 
expressions for the amplitude of the desired signals are then 
identical with the results obtained by Sollfrey [7]. Further- 
more, we also obtain expressions for the ampUtude of the 
cross-product terms, which are not given by Sollfrey. The 
expression for h^^^ is convergent, however, only if a is 
greater than 2b. For the case where 2b is greater than a and 
noise is weak, //^^^ may be evaluated by the method used by 
Sollfrey for the noiseless case. It involves replacing the 
product of the two Bessel functions of the same argument 
in (16) by a contour integral representation 

" 2^- JL nr, + s + 1) • r(^ + s + 1) • r(>/ + ^ + s + 1) 

i; + {+2s 
ds 

(i-X'-M- i^ + v + i , M + 1 '     2crV 
ds. 

(25) 

For large values of signal-to-noise ratio a^/2ff^ the 
asymptotic expansion of (23) for the confluent. hyper- 
geometric function can be used for evaluating the integral. 
Unfortunately, the integral converges only for the first 
two terms of the series expansion. Thus, the expression for 
h^^i will be vaUd only for large values of a^l2a^. Using the 
method of residues for solving the integral, the following 
expressions for the amplitudes of the desired signal com- 
ponents are obtained: 

^lOO   -,;r7/2    I,(„,)2(„   +    1), 

(24) 

V 2n+l 

71 + 1 

inn + \)f  la\ 
! \2b/ 

^ + 3(iA(n + 1) - >/'(n + i)} + 21og — 
+ 1 '^ 

_2_ /_^y f [r(» + i)r i^X""' 
^ n'^'KSh'   nt'o«![(n + l)!]^ W 

+ ^{^^l{n + 1) - \li{n + \)] 
n + \      2n + 1 

+ 2 log 
n^ \abl a 

^010-^2 ^7/2„4-„ „,^(„+l)!]2 \2bJ 

+ 3{Hti + 1) 

(26) 

2n + 2 

(n + l)(2n + 1) 

2b 
- </'(« + i)} + 2 log — 

n"'\J~2j   nh (n!)^ \2b) 

2n + 1 
+ l{^{n + 1) - </'(« + i)} 

and then solving the double integral by changing the order 
of integration, i.e., by evaluating the real integral over v 
first. The real integral in this case is that of Weber and 
Sonine [8], analogous to that of (20), and its solution 
is obtained in terms of the confluent hypergeometric 
function. The result is 

' The series in (21) is convergent for all parameter values except 
<7^ = 0. 

+ 2 log — 
a 

2b 
> 1. (27) 

Here, ij/i ) denotes the logarithmic derivative of the gamma 
function. Similar expressions can also be derived for the 
desired cross-product components; the calculation of the 
residues, however, is quite tedious. In the absence of input 
noise (tr ^ = 0), the expressions are identical with the results 

of Sollfrey [7]. 
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To evaluate the coefficients h^^^ for arbitrary signal    tions. For example, the expression for Aioo, 
amplitudes and weak noise, it is convenient to use Bate- 
man's  expansion   [12]  for  the  product  of two  Bessel 
functions: hxoo = - 

2a' 

-l/2(, + {+l) J,{vb) ■ Jfivc) = lb" ■ c^[2ib^ + c')-] 

• £ f(>i,^,n,b,c) 
n = 0 

n\l (b^ + c^) nt'o 

2fi i-n, n + 1, 1, 

(28) 

I (-l)"2fi(-n, n + 1,1, i) 

) b' + c' 

1 (n + i, -n - i2, 
2(b' 

(32) 

where 
may be simplified by using the identity 

firi,^,n,b,c) = (-1)" ■ (ti + ^ + 2n + I) ■ r{t] + i + n + I) ■ n^ + n + I) 
ni-r(T] + n + i)-r(^ + i)-r(^ + i) 

• 2F,{-n, ^ + ^ + „ + 1, ^ + 1, i). ,f j (-„,,, + ^ + „ + 1, { + 1, —^) , 
\ b^ + c^l 

Both  the  hypergeometric functions  terminate after the 
(n + l)th term due to the parameter -n. 

Substitution of (28) in (16) yields 

(29) 

2Fi(-«, n + 1, 1, i) = VTT   r (^ - ^) • r (l + ^) 

K,, = - ft" • c'- [2(i^ + c^)]-^/^^**^!) f f{r,,^,n,b,c) 
n = 0 

Jn 

J,{va)-J,^,^2„^,{vsj2{b^ + c^)) 
.,2 

• exp v^a^ 
dv. 

(30)    /'ioo = ^(")  S 

(33) 

It is seen that the series is zero for all odd integer values of 
n. In the special case of two signals having equal amplitudes, 
the second hypergeometric function can also be replaced 
by (33), yielding the simple expression 

1 (A y  [r(n + i)T 
n^ \b/ „ = o       (n!)2 

The integral can be easily evaluated by replacing the / a^\        2b 
product of the Bessel functions by the series representation " 2^1 Un + i, -2n - i, 2, — 1,      — > 1.   (34) 
of (19). In the absence of noise, the integral represents the la 
discontinuous integral  of Weber and Schafheitlin  [13].     Similarly, for/JQ 10 the following expression is obtained 
Its solution depends on the relative magnitude of the a    «    c-ir 
arguments of the two Bessel functions. In the following,     /Joio = /Jooi = — "^    '■     ' ^^^ "*" ^' 
only the solution for a < \l2{b^ + c^) will be considered; ' 

the case a > ^2(b^ + c^) can be treated similarly. Using 
the appropriate solution of the integral [13], the expression 
for h^^i. may be written as 

K,, = ^ a" • ft" ■ c\2ib' + c^)]-i/2(.+,+i) f f(,j,^,n,b,c) 
~ n = 0 

r[« + KM + ;; + Q] 

- Y 
n^ n=o (n + 1) ■ r(n + |) 

2Fi(n+i,-n-i,l,^^) 

^2) 
cos M7r/2      r 

(-^) 
sin «7r/2 

hi) ^(^^) 
;,!. r[« + 2 + iC; + ^-/i)] 

■ 2^1 [n + Ufi + ri + 0, -n- I +i(n- n - 0, 

^>1    (35) 
a 

by   using   the   expression   in   the   brackets   to   replace 

, a^       \ /—-3 Y ^\lit-{n + l)-2Fi(-n, « + 2, 1, i). Numerical evaluation 
^ 2{b^ + c^)/ ' (     + c ) > a.   (31)    of (34) and (35) yield results identical to those obtained 

from (26) and (27) in the absence of noise; however, it has 
This expression is convergent and yields the amplitudes not been possible to convert one form into the other, 

of the signals and the cross products in the absence of noise. Similar expressions for the cross products can be readily 
In most cases, it would be possible to simplify the expression derived. This approach has the advantage over Sollfrey's 
for any h coefficient by expressing the hypergeometric method in that it directly provides the expressions for the 
function containing the factor i in terms of gamma func-    signals and all the cross products. Thus, there is no need to 
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calculate the residues for each h coefficient, as required 
in the evaluation of (25). 

NUMERICAL RESULTS 

The results for Hmiting of three signals in noise are shown 
in Figs. 2-6. In all cases, the amplitudes of two signals were 
assumed to be equal {b = c), in order to reduce the number 
of variables. The following expressions were used for 
numerical computations: 

;       - 2 l_^\  V  (-l)''-(2p)!-r(p + i) /   b   y^ 

"""^UJA (pir V2J 

iF. [p -f i, 2, - ^^) (36) 

{-\Y-{2p + i)!-r(p + i) 

(p!)^-[(p + 1)!]^ 

These are obtained from (21) by replacing the Gaussian 
hypergeometric function with the identity of (22). When 
the noise is weak, computation of these expressions breaks 
down and it is necessary to employ the asymptotic expan- 
sion of (23) for the confluent hypergeometric function. 
The resulting expressions, however, are convergent only 
if a is greater, than lb. For the case a less than 2b (26) and 
(27) are applicable. 

The curves in Figs. 2 and 3 show the ampHtudes h^^Q 
and /)oio plotted against the limiter input power ratio of 
double to single component with the limiter input signal- 
to-noise ratio of the single component as parameter. For 
bja small, that is, strong single and weak double component, 
the results approach the one-signal-in-noise case discussed 
by Davenport [1]. In the absence of noise, the single com- 
ponent tends to Ajn and gets essentially all of the limiter 
output power. As the signal-to-noise ratio decreases, the 
noise uses up some of the output power, so that the pro- 
portion used by the strong single component decreases. 
As the ratio bja increases, the proportion of the output 
power used by the double component also increases, while 
that of the single component decreases. When the double 
component is strong, that is bja is large, the results approach 
the two-signal case discussed by Jones [2]. The double 
component tends to 8/n^, when there is no noise. Each 
of the two strong signals receives —3.9 dB of the output 
power, so that 0.9 dB remains for the weak single com- 
ponent and cross products. As the signal-to-noise ratio 
decreases, the share of the output power consumed by 
noise increases, and consequently the power in the double 
component decreases. The plot in Fig. 4 shows the result 
of limiting three signals of equal amplitude in noise. 

Signal suppression is another phenomena of interest. 
It is defined as the ratio of the weak-to-strong component 
ratio at the limiter output to the corresponding quantity 

Fig. 2.   Amplitude of the limiter output single component—three 
inputs. 
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a 

Fig. 3.    Amplitude of the limiter output double component—three 
inputs. 

at the input. In decibels the suppression ratio is given by 

L = 20 log ^ - 20 log - 
b 

= 20 log -^^ - 20 log - 
hioo ^ 

"010 

"010 

> 1 

< 1. (38) 

Positive decibel values of L correspond to reduction of the 
weak component. The first case corresponds to a strong 
single component and weak double components, the 
second to weak single and strong double. In Figs. 5 and 6, 
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Fig. 4.   Amplitude of the limiter output signal components, three 
inputs equal in amplitude. 
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Fig. 5.    Three-signal suppression—one strong, two weak signals. 

3 

2 

1 

L     0 

-1 

-2 

-3 

1      1 1      1      1      1 1 

- a2 

2a2 
IdBl - 

-.1 ---..      "''° - 

~~~-^r"~~~~\''-- ^-^ 
~ 

^"""""-^^"-^ "^\ - 
^"""■^oo ^^•^■^.^ ^^^^^ 

1      1      1 1       1       1      1 
^^ Y^ 

0        2        4        6 10       12      14       16       18       20 

Fig. 6.   Three-signal suppression—one weak, two strong signals. 

the suppression ratio L is plotted against the input ratio 
bla in absolute decibels. 

For the one-strong-two-weak case shown in Fig. 5, the 
maximum suppression of the weak double component 
occurs at large input signal-to-noise ratios, and it is seen 
to be 6 dB when there is no noise. On the other hand, 
when the noise is strong, the limiter acts essentially as a 
linear device, in the sense that almost no suppression of the 
weak double component takes place. This behavior is in 
complete agreement with the suppression of a weak signal 

by a strong signal, as influenced by the noise level, for the 
two-signal case discussed by Jones [2]. In the case of strong 
double and weak single components, shown in Fig. 6, 
hard-limiting enhances the weaker component with respect 
to the stronger double components at large values of b\a. 
Thus, under these circumstances, the limiter displays 
"negative suppression." Maximum enhancement of the 
weak signal occurs in the absence of noise. 

This interesting phenomenon was originally discovered 
by Jones [2] for the case where the weak signal was noise 
rather than another sinusoid. In the case of three signals, 
the eff'ect arises from beats between the two equal strong 
components, which permit the weak component to slip 
through. It also appears in the results of Shaft [3]. 

The asymptotic curves in Figs. 2-6 describing the noise- 
less case were first obtained by Sollfrey [7]. 

LIMITING OF n SIGNALS AND NOISE 

The method used to analyze the case of three input signals 
may be extended to the general case of n angle-modulated 
sinusoids. The signal and intermodulation products at the 
limiter output are obtained by inserting the expression for 
the limiter input signals 

s(0 =  £ fli cos [cofj -f ^,.(0] 
i = l 

into (10) and using the general relationship 

sin I £ i?i cos a; I 

(39) 

n hm sin (s Vi («,• + ^)) 

(40) 

where the symbol H indicates that all n of the /^^ coeffi- 
cients are multiplied together. Thus, the limiter output, 
prior to bandpass filtering, is given by 

Pl = - 
S   K 

sm %^ p, {co^t + Ut) + -^ 

where 

VP2---P„ = -        n -/pX^flOexp 
dv 

V 

(41) 

(42) 

represents the amplitude coefficient of the output signal 
and intermodulation components. 

It is apparent that the determination of all those terms in 
(41) that will fall in the passband of the filter is quite a 
formidable task when n is large. Fortunately, Shaft [3] 
has shown that the dominant output components are the 
signal and cross-product terms for which \Pi\^^^ is small 
(< 2). This approximation considerably simplifies (41), 
since instead of considering all the pi from — oo to co, it 
is only necessary to consider them in the range from —2 
to 2. The significant filter output components may be 
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determined by first considering the different frequency 
combinations in (41), and then selecting the desired ones, 
i.e., the combinations that will yield frequencies in the 
passband. 

A closed-form solution for the amplitudes of the output 
components is extremely difficult when n is large. For more 
than three signals, the amplitudes may be determined 
either by numerically evaluating the integral of (42), or by 
using approximations to solve the integral. Shaft [3] used 
the first approach and has reported extensive computer 
results for as many as a hundred input signals. Approx- 
imate expressions for the amplitudes of the signals and 
cross products may be obtained by using approximations 
for the Bessel functions. As an illustration, consider the 
signal at frequency /j. The amplitude and phase of the 
signal is obtained from (41) and (42) by setting Pi = ±\ 
and all the other Pi equal to zero. The result is 

where r = Wj? + 4>i{t), and similarly for s and /. The 
amplitude coefficient is given by 

/hiio-o = - f" Ji{va,)J,{va2V,(.va^) fl hi^a^ 
n J '=* 

dv 

where 

/iio.--c 

Zi(0 = /!io...ocos(a)ir + <^,(0), 

- I    ^i(t^ai) n -^0(1^0;) exp 
71 Jo ' = 2 

(43) 

dv 

V 

(44) 

An approximate solution to (44) is obtained by using an 
exponential approximation for the product of Bessel 
functions, as suggested by Gyi [4]: 

n Joivad ~ exp [-iu^CTi ], (45) 

where 

Tl^ 

n 

= I 
i = 2 2 ■ 

The result is then 

h.o-.-o = 2 J^exp P 
.     2. [M -t- / ■® ,   (46) 

• exp 
v'c^ (48) 

where p = ai^/[2((T^ + CTJ^)]. Bounds on the error for 
this approximate solution of Gyi have been recently ob- 
tained by Campbell [15]. The bound is of the order n'^ 
when the amplitudes of all the signals are approximately 
equal. 

The strongest cross-product terms are those that are 
produced due to the mixing of any two or three input signals. 
Approximate expression for the amplitude of these cross 
products can be obtained from the results for two signals 
and three signals, respectively. As an example, consider 
the strongest cross products due to the mixing of the 
frequencies /i, /z, and /a. They may be obtained from 
(41) and (42) by considering all the combinations of these 
three frequencies. The result is 

^-IMPCO = -hiixo-- -oCcos {r + s + t) + cos{r + s - t) 

-f cos (r - j + 0 + cos (r - s - f)],       (47) 

Using the exponential approximation to the product of the 
Bessel functions, the solution of the above integral may be 
obtained from (21) merely by replacing a^ by ff2^ where 

i = 4   2 

The components that collectively make up the limiter 
output noise may be obtained by substituting (39) for 
s(t) in (12), and expanding sin \ys{i)\ and cos [^^(r)] with 
the aid of (40). The expansion of cos \vs{i)\ will contain 
cosine terms instead of sine in (40). The resulting expression 
then represents the combined output noise produced due 
to the interaction of the input noise with itself (« x « 
terms) and that produced as a result of the interaction of 
the input signal with noise (5 x « terms). In this expression, 
the term corresponding to m. and all Pi equal to zero 
represents the direct feedthrough noise {n x n terms), and 
all the remaining terms constitute the noise produced by 
the mixing of the signal with the limiter input noise {s x n 
terms). The expression for the direct feedthrough noise 
(n X n terms) is given by 

rin.nit) = -        •^iC'^O n Joivad ~ (COS coot + 4>).   (49) 
71 Jo '■=! ^ 

Davenport [1] has shown, for the case of one signal and 
noise, that only the « x « terms contribute significantly 
to the output noise at low limiter input signal-to-noise 
ratios. When the number of signals is sufficiently large, 
so that the amplitude distribution of their sum is approx- 
imately Gaussian, the signal-to-noise ratio for any one 
signal will be small at the hmiter input. Consequently, 
from Davenport's results, it is reasonable to expect that 
only the direct feedthrough noise will contribute signifi- 
cantly to the Hmiter output noise. 

Again, using the exponential approximation to the 
product of the Bessel functions (49) can be readily integrated 
[8] to yield 

'-^'^ = Jl © '''' (*''' ' w) '°'^"°' "^ '^^'^^' 
(50) 

where 

= I 
represents the total power of all the input signals. 

The power in the feedthrough noise component is given 
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by 

No Ji(t;r)exp [-ii;^(T3^] — 
Jo V 

= 4 f"  f" exp l-Wiu' + v')] 
n   Jo   Jo 

du dv 
ElJ,iur)-J,ivr)-] (51) 

M     V 

where 

E[_J,(ur)-J,ivr)-] 1 r°° 
a   Jo 

r) ■ JiCrr) • r 

exp 
2 T 

2? 
dr.   (52) 

This integral is well known as Weber's second exponential 
integral [14]. Using its solution [14], (51) may be written 
explicitly as [16] 

N. = 4 f IE(l±iffl 
n  n = o n! • (n + 1) ! W + (T3V 

2n+l 

(53) 

It is seen that (50) represents the dominant output noise 
in the time domain. This representation is particularly 
useful for the evaluation of the system following the band- 
pass limiter. Equation (50) may also be expressed in the 
form 

'/nxnW = x^{t) cos (OQI - yy{t) sin (o^t, (54) 

where x^{t) and ji(?), the amplitudes of the "in-phase" 
and "quadrature" components, are given by 

The functions Xy{t) and ji(r) are in general non-Gaussian 
random variables, whose distributions may be obtained 
from the distribution of r and (/>. 

CONCLUSIONS 

The effect of ideal bandpass hmiting on an arbitrary 
signal lying in narrowband stationary zero-mean Gaussian 
noise has been analyzed, and general analytic expressions 
for the limiter output components have been derived using 

a time-domain approach. A major advantage of the time- 
domain method is that it preserves the phases of the signal 
and intermodulation products, which are destroyed in the 
characteristic-function method generally used in limiter 
studies. Expressions for the desired signal and inter- 
modulation product amplitudes have been obtained for the 
case when the input consists of three angle-modulated 
sinusoids and noise. The analysis is extended to n angle- 
modulated sinusoids plus noise, and approximate expres- 
sions for the signal, intermodulation product, and noise 
terms are derived. It has been possible to obtain a time- 
domain representation for the limiter output noise, which is 
particularly useful for the evaluation of the system following 
the bandpass limiter. 

ACKNOWLEDGMENT 

The author wishes to thank Dr. P. D. Shaft for reviewing 
the paper prior to publication and providing many helpful 
suggestions. 

REFERENCES 

[1] W. B. Davenport, Jr., "Signal-to-noise ratios in bandpass lim- 
iters," /. Appl. Phys., vol. 24, pp. 720-727, June 1953. 

[2] J. J. Jones, "Hard-limiting of two signals in random noise," 
IEEE Trans. Inform. Theory, vol. IT-9, pp. 34-^2, Jan. 1963. 

[3] P. D. Shaft, "Limiting of several signals and its effect on com- 
munication system performance," IEEE Trans. Commun. Techno!., 
vol. COM-13, pp. 504-512, Sept. 1965. 

[4] M. Gyi, "Some topics on limiters and FM demodulators," 
Stanford Univ., Stanford, Calif., Rep. SEL 65-056, July 1965. 

[5] J. Granlund, "Interference in frequency-modulation reception," 
M.I.T. Res. Lab. Electron., Cambridge, Mass., Tech. Rep. 42, 
Jan. 1949. 

[6] E. J. Baghdady, "Interference rejection in FM receivers," M.I.T. 
Res. Lab. Electron., Cambridge, Mass., Tech. Rep. 252, Sept. 
1956. 

[7] W. Sollfrey, "Hard limiting of three and four sinusoidal signals," 
IEEE Trans. Inform. Theory, vol. IT-15, pp. 2-7, Jan. 1969. 

[8] M. Abramowitz and I. A. Stegun, Eds., Handbook of Mathematical 
Functions with Formulas, Graphs and Mathematical Tables.   New 
York: Dover, 1965, p. 486. 

[9] I. S. Reed, "The effect of a limiter on the relative amplitudes of 
two signals in noise," M.I.T. Lincoln Lab., Lexington, Mass., 
Group Rep. 47-18, Sept. 1958. 

[10] W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and 
Theorems for the Special Functions of Mathematical Physics. 
New York: Springer, 1966, p. 418. 

[11]  , Formulas and Theorems for the Special Functions of Math- 
ematical Physics.   New York: Springer, 1966, p. 78. 

[12] G. N. Watson, A  Treatise on the Theory of Bessel Functions. 
London: Cambridge, 1962, p. 370. 

[13]  , A Treatise on the Theory of Bessel Functions.   London: 
Cambridge, 1962, p. 398. 

[14]  , A Treatise on the Theory of Bessel Functions.   London: 
Cambridge, 1962, p. 395. 

[15] L. L. Campbell, "Approximation of an integral connected with 
hard-limited signals and noise,"  Dep.  Math.,  Queen's Univ., 
Kingston, Ont., Res. Rep. 69-3, July 1969. 

[16] B.  O. Peirce and R.  M.  Foster, A Short Table of Integrals. 
Waltham, Mass.: Blaisdell, 1957, p. 68. 

Reprinted by permission from IEEE TRANSACTIONS ON INFORMATION THEORY 
Vol. IT-18, No. 3, May 1972, pp. 332-340 

Copyright 1972 by The Institute of Electrical and Electronics Engineers, Inc. 
PRINTED IN THE U.S.A. 


